Publications

Financed by ERC StG GEDENTQOPT.


Publication statistics

    Science: 1

    Phys. Rev. Lett.: 14 (Editors' Suggestion: 2, featured in physics.aps.org: 1) 

    New J. Phys: 5

    Sci. Rep.: 1

    Phys. Rev. A: 15 (Editors' Suggestion: 2)

    J. Phys. A: 2

    Acta Sci. Math. (Szeged): 1

    EPJ Quantum Technology: 1

    Master's Thesis: 1

    Ph.D. Thesis: 3  


Refereed publications in journals and preprints

1. G. Tóth, W. Wieczorek, D. Gross, R. Krischek, C. Schwemmer, and H. Weinfurter, Permutationally invariant quantum tomography [pdf,pdf2]Phys. Rev. Lett. 105, 250403 (2010); arxiv:1005.3313.

2. E. Alba, G. Tóth, and J.J. García-Ripoll, Mapping the spatial distribution of entanglement in optical lattices [pdf], Phys. Rev. A 82, 062321 (2010); arxiv:1007.0985.

3. G. Vitagliano, P. Hyllus, I.L. Egusquiza, and G. TóthSpin squeezing inequalities for arbitrary spin [pdf,pdf2], Phys. Rev. Lett. 107, 240502 (2011); arxiv:1104.3147.

4. R. Krischek, C. Schwemmer, W. Wieczorek, H. Weinfurter, P. Hyllus, L. Pezzé, and A. Smerzi, Useful Multiparticle Entanglement and Sub-Shot-Noise Sensitivity in Experimental Phase Estimation, Phys. Rev. Lett. 107, 080504 (2011); arxiv:1108.6002.

5. J. Chwedenczuk, P. Hyllus, F. Piazza, and A. Smerzi, Sub shot-noise interferometry from measurements of the one-body density, New J. Phys. 14, 093001 (2012); arxiv:1108.2785v1.

6. B. Lücke, M. Scherer, J. Kruse, L. Pezzé, F. Deuretzbacher, P. Hyllus, O. Topic, J. Peise, W. Ertmer, J. Arlt, L. Santos, A. Smerzi, and C. Klempt, Twin Matter Waves for Interferometry Beyond the Classical Limit, Science 334, 773 (2011)arxiv:1204.4102.


7. G. TóthMultipartite entanglement and high-precision metrology [pdf]Phys. Rev. A 85, 022322 (2012); arxiv:1006.4368.

8. P. Hyllus, W. Laskowski, R. Krischek, C. Schwemmer, W. Wieczorek, H. Weinfurter, L. Pezzé, and A. Smerzi, Fisher information and multiparticle entanglement, Phys. Rev. A 85, 022321 (2012); arxiv:1006.4366.

9. J. TuraR. AugusiakP. HyllusM. KuśJ. Samsonowicz, and M. Lewenstein, Four-qubit PPT entangled symmetric states, Phys. Rev. A 85, 060302(R) (2012)arxiv:1203.3711.

10. P. Hyllus, L. Pezzé, A. Smerzi, and G. Tóth, Entanglement and Extreme Spin Squeezing for a Fluctuating Number of Indistinguishable Particles [pdf], Phys. Rev. A 86 012337 (2012); arxiv:1204.5329.

11. T. Moroder, P. Hyllus, G. Tóth, C. Schwemmer, A. Niggebaum, S. Gaile, O. Gühne, and H. Weinfurter, Permutationally invariant state reconstruction [pdf], New J. Phys. 14, 105001 (2012), Focus issue on Quantum Tomographyarxiv:1205.4941.

12. D. Petz and G. Tóth, Matrix variances with projections [pdf], Acta Sci. Math. (Szeged) 78, 683 (2012).

Note: Acta Sci. Math. (Szeged) was founded by A. Haar (Haar measure, Haar transform, etc.) and F. Riesz.

13. G. Tóth and D. Petz, Extremal properties of the variance and the quantum Fisher information, Phys. Rev. A 87, 032324 (2013) [pdf]; arxiv:1109.2831.

14. I. Urizar-LanzP. HyllusI.L. EgusquizaM.W. MitchellG. TóthMacroscopic singlet states for gradient magnetometry [pdf,pdf2]Phys. Rev. A 88, 013626 (2013); arxiv:1203.3797.

15. Z. Zimborás, M. Faccin, Z. Kádár, J. Whitfield, B. Lanyon, and J. Biamonte, Quantum Transport Enhancement by Time-Reversal Symmetry BreakingScientific Reports 3, 2361 (2013); arxiv:1208.4049.

16. Z. Zimborás, R. Zeier, M. Keyl, and T. Schulte-Herbrueggen, A Dynamic Systems Approach to Fermions with Interrelation to Spins, EPJ Quantum Technology 2014, 1:11; arXiv:1211.2226.

17. Z. Kádár, M. Keyl, R. Matjeschk, G. Tóth, and Z. ZimborásSimulating continuous quantum systems by mean field fluctuations, arXiv:1211.2173.

18. G. Vitagliano, I. Apellaniz, I.L. Egusquiza, and G. Tóth, Spin squeezing and entanglement for arbitrary spin, Phys. Rev. A 89, 032307 (2014) [pdf]; arxiv:1310.2269.

19. V. Eisler and Z. Zimborás, Area law violation for the mutual information in a nonequilibrium steady state, Phys. Rev. A 89, 032321 (2014); arXiv:1311.3327.

20. B. Lücke, J. Peise, G. Vitagliano, J. Arlt, L. Santos, G. Tóth, and C. Klempt, Detecting multiparticle entanglement of Dicke states [pdf,pdf2], Phys. Rev. Lett. 112, 155304 (2014)arxiv:1403.4542; Editors' Suggestion; synopsis at physics.aps.orgarticle in the Revista Española de Física, Puntos de interés, Vol 28, Number 2, page 31 (2014).

21. C. Schwemmer, G. Tóth, A. Niggebaum, T. Moroder, D. Gross, O. Gühne, and H. Weinfurter, Efficient Tomographic Analysis of a Six Photon State [pdf,pdf2], Phys. Rev. Lett. 113, 040503 (2014)arXiv:1401.7526.

22. N. Behbood, F. Martin Ciurana, G. Colangelo, M. Napolitano, G. Tóth, R.J. Sewell, M.W. Mitchell, Generation of macroscopic singlet states in a cold atomic ensemble 
[pdf,pdf2], Phys. Rev. Lett. 113, 093601 (2014); arxiv:1403.1964Editors' Suggestion, covered in Scientific American “Quantum Entanglement Creates New State of Matter”.

23. G. Tóth and I. ApellanizQuantum metrology from a quantum information science perspective (review) [pdf]J. Phys. A: Math. Theor. 47, 424006 (2014)special issue of "50 years of Bell's theorem"; arxiv:1405.4878.

24. D.W. Lu, J. D. Biamonte, J. Li, H. Li, T.H. Johnson, V. Bergholm, M. Faccin, Z. Zimborás, R. Laflamme, J. Baugh, and S. Lloyd, Chiral Quantum Walks, Phys. Rev. A 93, 042302 (2016); arXiv:1405.6209.

25. G. Tóth, T. Moroder, and O. Gühne, Evaluating convex roof entanglement measures [pdfpdf2], Phys. Rev. Lett. 114, 160501 (2015)arxiv:1409.3806.

26. V. Eisler and Z. Zimborás, Entanglement negativity in the harmonic chain out of equilibrium, New J. Phys. 16, 123020 (2014); arxiv:1406.5474.

27. L. Pezzè, P. Hyllus, and A. Smerzi, Phase sensitivity bounds for two-mode interferometers, Phys. Rev. A 91, 032103 (2015); arxiv:1408.6971.

28. I. Apellaniz, B. Lücke, J. Peise, C. Klempt, and G. TóthDetecting metrologically useful entanglement in the vicinity of Dicke states [pdf]New J. Phys. 17, 083027 (2015)arXiv:1412.3426.

29. A. Cabello, M. Kleinmann, and C. Budroni, Necessary and sufficient condition for quantum state-independent contextuality, Phys. Rev. Lett. 114, 250402 (2015);  arXiv:1501.03432.

30. C. Eltschka, G. Tóth, and J. Siewert, Partial transposition as a direct link between concurrence and negativity, Phys. Rev. A 91, 032327 (2015) [pdf]; Editors' Suggestion; arxiv:1505.01833.

31. C. Budroni, G. Vitagliano, G. Colangelo, R. J. Sewell, O, G
ühne, G. Tóth and M.W. Mitchell, Quantum non-demolition measurement enables macroscopic Leggett-Garg tests [pdf], Phys. Rev. Lett. 115, 200403 (2015)arxiv:1503.08433.

32. M. Kleinmann and A. Cabello, Quantum correlations are stronger than all nonsignaling correlations produced by n-outcome measurements, Phys. Rev. Lett. 117, 150401 (2016); (arXiv:1505.04179)

33. I. ApellanizM. KleinmannO. Gühne, and G. Tóth, Optimal witnessing of the quantum Fisher information with few measurementsPhys. Rev. A 95, 032330 (2017)Editors' Suggestion; arXiv:1511.05203[pdf]

34. L. Knips, C. Schwemmer, N. Klein, J. Reuter, G. Tóth, and H. Weinfurter,  How long does it take to obtain a physical density matrix?, arxiv:1512.06866.

35. E. S. Gómez, S. Gómez, P. González, G. Cañas, J. F. Barra, A. Delgado, G. B. Xavier, A. Cabello, M. Kleinmann, T. Vértesi, G. Lima,  Device-independent certification of a nonprojective qubit measuremen, Phys. Rev. Lett. 117, 260401 (2016); arXiv:1604.01417.

36. G. Sentís, E. Bagan, J. Calsamiglia, G. Chiribella, and R. Munoz-Tapia, The quantum change pointPhys. Rev. Lett. 117, 150502 (2016); arXiv:1605.01916.

37. A. Monràs, G. Sentís, and P. Wittek, Inductive quantum learning: Why you are doing it almost right, Phys. Rev. Lett., in press; arXiv:1605.07541.

38.  G. Vitagliano, I. ApellanizM. Kleinmann, B. Lücke, C. Klempt, and G. Tóth, Entanglement and extreme spin squeezing of unpolarized states, New J. Phys. 19, 013027 (2017); arXiv:1605.07202. [pdf]

39. G. Sentís, C. Eltschka, O. Gühne, M. Huber, and J. Siewert, Quantifying entanglement of maximal dimension in bipartite mixed statesPhys. Rev. Lett. 117, 190502 (2016); arXiv:1605.09783.

40. A. Cabello, M. Kleinmann, and J.R. Portillo, Quantum state-independent contextuality requires 13 rays, J. Phys. A: Math. Theor. 49, 38LT01 (2016); arXiv:1606.01848.

41. G. Sentís, C. Eltschka, and J. Siewert, Quantitative bound entanglement in two-qutrit states, Phys. Rev. A 94, 020302(R) (2016); arxiv:1609.01698.

42. S. Altenburg, S. Wölk, G. Tóth, O. Gühne, Optimized parameter estimation in the presence of collective phase noise, Phys. Rev. A 94, 052306 (2016); arXiv:1607.05160. [pdf]

43. 
G. Tóth
, Lower bounds on the quantum Fisher information based on the variance and various types of entropies, arxiv:1701.07461.

44. I. Apellaniz, I. Urizar-Lanz, Z. Zimboras, P. Hyllus, and, G. Toth, Precision bounds for gradient magnetometry with atomic ensembles, arXiv:1703.09056.

45.
G. Fagundes, M. Kleinmann, Memory cost for simulating all quantum correlations of the Peres–Mermin scenario, J. Phys. A: Math. Theor. 50, 325302 (2017), arXiv:1611.07515

46.
M. Kleinmann, T. Vértesi, A. Cabello, Proposed experiment to test fundamentally binary theories, Phys. Rev. A  96, 032104 (2017), arXiv:1611.05761

47. O. Marty, M. Cramer, G. VitaglianoG. Tóth, and M. B. Plenio, Multiparticle entanglement criteria for nonsymmetric collective variancesarXiv:1708.06986.

48. G. Vitagliano, G. Colangelo, F. Martin Ciurana, M. W. Mitchell, R. J. Sewell, and G. Tóth, Entanglement and extreme planar spin squeezing, arXiv:1705.09090.

49. G. Tóth and T. Vértesi, Quantum states with a positive partial transpose are useful for metrology, arXiv:1709.03995.


Book chapters

1. O. Gühne, M. Kleinmann, and T. Moroder, Analysing multiparticle quantum states, in: “Quantum [Un]Speakables II,” edited by R. Bertlmann and A. Zeilinger (Springer, 2017) pp. 345–364 (2016); arXiv:1506.06976.

Theses

1. I. ApellanizQuantum Limits on the Measurement Precision of a Magnetic Field GradientMaster's Thesis, University of the Basque Country UPV/EHU, Bilbao, Spain (2012). (Advisor: P. Hyllus)

2. I. Urizar-LanzQuantum Metrology with Unpolarized Atomic EnsemblesPh.D. Thesis, University of the Basque Country UPV/EHU, Bilbao, Spain (2014). (Advisor: G. Tóth)

3. G. VitaglianoSpin Squeezing, Macrorealism and the Heisenberg uncertainty principlePh.D. Thesis, University of the Basque Country UPV/EHU, Bilbao, Spain (2015); arxiv:1511.08104. (Advisor: G. Tóth)

4. I. Apellaniz, Lower bounds on Quantum Metrological PrecisionPh.D. Thesis, University of the Basque Country UPV/EHU, Bilbao, Spain (2017); arxiv:1707.01433. (Advisor: G. Tóth)



3arXiv:1406.5474